2016 IEEE TrustCom-BigDataSE-ISPA

DroidCollector: A High Performance Framework
for High Quality Android Traffic Collection

Dong Caof, Shanshan Wang', Qun Lif, Zhenxiang Chen'*, Qiben Yan?, Lizhi Pengfand Bo Yang'
TSchool of information science and engineering University of Jinan, Jinan, Shandong, China, 250022
iUniversity of Nebraska Lincoln, NE, USA, 68588
*Corresponding author, Email: czx@ujn.edu.cn

Abstract—In this mobile era, people have become increasingly
dependent on smart devices. Smartphones have emerged as
the most popular smart computing device. However, numerous
security issues affecting smartphones have been exposed. In
recent years, mobile network traffic based approaches have been
proposed to identify malware malicious behaviors, but these
approaches, especially the approaches using machine learning
methods are largely constrained by the difficulty of mobile traffic
dataset collection. Without sufficient and effective mobile traffic
dataset, research focusing on mobile network traffic will be
hindered. This study introduces DroidCollector, a high perfor-
mance framework for high quality Android traffic collection.
This framework leverages multithreading to perform active and
automatic network traffic collection. Using this framework, we
collect 808 MB and 330 MB traffic data generated by 6000
benign apps and 5560 malicious apps in a short period of time,
respectively. The collected high quality traffic is mostly generated
from apps and with little irrelevant traffic. We also apply machine
learning algorithm on the extracted traffic features to identify
malicious network behaviors. The experimental result shows that
it can achieve a malicious traffic detection rate of 98 % on average.

I. INTRODUCTION

The daily use of mobile phones has increased significantly
since the dawn of mobile era. However, mobile security
can be easily compromised by the malicious software, i.e.
mobile malware. Thus, the mobile phones should be effectively
protected against mobile malware. Researchers have made
great efforts on identifying malware in mobile app markets
[1], but a wide variety of mobile malware still find their way
into the mobile app markets, especially the third-party mobile
app markets.

It is reported that more than 90% malware performs mali-
cious behaviors via network interface [1]. For instance, Sarma
et al. [2] analyzed the permission requests of Android apps
among 150,000 apps and discovered that 68.50% of benign
apps require network access, whereas 93.28% of malware
require network access. Similarly, [3] also shows that 93% of
malware requests network connectivity among 2000 malware
samples. Therefore, researchers can resort to network traffic
to detect Android malware. Many researches Start from the
mobile network traffic, and then extract malware’s behavioral
characteristics in network traffic to distinguish them from a
large amount of benign traffic. Nevertheless, research efforts
have been limited by the lack of sufficient mobile malware
traffic datasets.

In this paper, an Android malware traffic generation and
collection framework called DroidCollector is designed and

2324-9013/16 $31.00 © 2016 IEEE
DOI 10.1109/TrustCom.2016.267

1753

implemented. This framework captures traffic from mobile
apps, which are actively installed on each collection machine.
The framework controls traffic collection via a hierarchical
management mechanism. Multiple traffic collection machines
work simultaneously. Each collection machine in this frame-
work runs multiple threads to collect mobile network traffic.
We capture packet-level traces in the first five minutes and
finally attain a traffic dataset with 808 MB benign traffic data
and 330 MB malicious traffic data. We further investigate
the traffic dataset by extracting traffic features and utilizing
these features to train a machine learning classifier, which can
be used to identify malicious network behaviors. This paper
mainly has the following contributions:

e Active and automatic Android traffic collection: using
this designed framework, we can collect Android traffic
data actively and automatically, which can solve the
difficulty in acquiring traffic data effectively.

High performance framework: With multithreading
parallel technology, DroidCollector can collect mobile
traffic data from a bunch of apps quickly.

High quality Android traffic data: Using this frame-
work, we collect a high quality traffic dataset, which
contains traffic mainly generated by the sample apps
with little OS generated background traffic. We have
shared and keep updating the dataset to stimulate re-
searches in this area.

The paper is organized as follows. Section II highlights
related work and motivation. Section III discusses the archi-
tecture of traffic collection framework. Section IV presents our
evaluation. Section V discusses the application of traffic data to
detect malware behaviors. Section VI analyzes the limitations
of this methodology. Section VII concludes the paper.

II. RELATED WORK AND MOTIVATION

Generally speaking, now traffic collection methods can
be classified as three. The first method is passively obtain
users’ mobile network traffic from network service providers.
For instance, Trestian et al. [4] applied rule mining spectral
clustering to investigate the relationships of more than 280,000
users in a 3G mobile network by using the data set from
their mobile carrier. Similarly, Maier et al. [5] focused on
anonymized packet-level data of over 20,000 DSL customer-
s. Obtaining mobile network traffic from network service
providers is straightforward, but it is also dependent on the
service providers’ willingness to share the data, and may be

@) CO‘ pute
1(!) I
& SOCIety

confined by stringent regulatory rules. The second method is
to manually collect mobile traffic. [6] designed SmartSiren to
collect communication activity information from smartphones.
Moreover, running an agent on a smartphone highly consumes
resources on user terminals. This method is difficult to be
implemented in a large scale system. Zhou et al. [7] manual-
ly analyzed malware samples in their collection. Falaki [8]
studied traffic on the basis of two sets of traces from 43
users across different platforms. The first data set is collected
using Netlog on mobile phones operating on Windows, and
the second data set is from the tcpdump tool on mobile
phones running on Android. Nevertheless, these studies have
implemented manual traffic collection, which cannot obtain
suffient traffic data sets. Furthermore, some researchers can
capture network traffic proactively and automatically. Chen et
al. [9] designed and implemented an Android malware traffic
generation & collection scheme and captured network traffic
traces in the first five minutes. However, the collected network
traffic contains lots of irrelevant background traffic and its
collection efficiency is not satisfactory.

Although considerable efforts have been made to collect
network traffic, other issues, such as efficiency of traffic
collection, quality of the collected network traffic data, have
yet to be addressed. Compared with previous studies, this
paper employs an approach that captures traffic using multiple
collection machines and multithreading in each collection ma-
chine. This collection method ensures that the DroidCollector
framework collects mobile app traffic with high efficiency.
Therefore, we can obtain enormous and high quality traffic
data through this framework in a short period of time.

III. METHODOLOGY
A. The Architecture Diagram of DroidCollector

The traffic collection framework is deployed in the UJN
(University of Jinan) campus network. At the gateway of the
campus, a firewall and NAT server are present to ensure the
safety of the traffic collection framework. As shown in Figure
1, DroidCollector consists of the following three parts: control
unit, data storage unit (including traffic storage server and app
storage server), and traffic generation & collection unit. The
control unit connects with the traffic generation & collection
unit and the storage unit via LAN switch. The control unit is
responsible for scheduling task. It assigns Android apps from
the app storage server to a traffic collection machine in the
traffic generation & collection unit. All collection machines
in the generation & collection unit work together to complete
the traffic collection task. Then, collected traffic data files are
transferred to the traffic storage server.

B. The Control Unit

The control unit receives apps sample resouces and the task
requirement from the system user. The control unit estimates
the desired number of collection machines according to the
number of apps and collection time. The control unit input
apps to the APK queues in different collection machines
for traffic collection. During the traffic collection period, the
control unit monitors all collection machines statuses. When
all of the collection machines complete the tasks assigned by
the control unit, the final traffic data is returned to the user.

1754

Android Virtual Device ‘

I Device |

o

App Storage

X

Traffic Storage

Traffic Generation and Collection

Center Control Unit .
Unit

Server

Fig. 1: The architecture diagram of DroidCollector

C. The Traffic Generation & Collection Unit

The traffic generation & collection unit includes multiple
collection machines that work in parallel. Each collection ma-
chine consists of three parts, namely, pretreatment, regulation,
and collection. The work flow of each collection machine is
shown in Figure 2.

1) Pretreatment: The purpose of the APK pretreatment part
is to preprocess these APK files to install these apps automat-
ically. DroidCollector framework modifies the command of
aadp dump badging to parse AndroidManifest.xml file. From
the AndroidManifest.xml files, we can obtain some essential
information, such as package name, MainActivity, and storage
path which are required by an installer.

2) Regulation: This part controls and manages multithread-
ing in the traffic collection program. Regulation consists of
three components which work together. These components
are the critical resource lock, thread controller, and APK
queue. The critical resource lock controls critical resources to
ensure the correctness of the corresponding programs. Critical
resources include the rights to use adb command and to control
the APK queue. In addition, the right to read and write thread
information resources is also included. The thread controller is
responsible for controlling thread starting, thread input, thread
output and terminating one thread. When a thread starts, the
thread controller needs to receive an APK message from the
APK queue and relay this message as a set of parameters
to the specific thread. The APK queue is used to store APK
information whose network traffic data we wish to obtain.

3) Collection: The collection part consists of the specific
functional modules. The function modules include the AVD
(Android Virtual Device) controller, traffic generator, and
exception handler. When a thread begins to execute, the col-
lection machine uses the command of the adb and emulator to
control the AVD’s creation and launch. After starting AVD, the
APK is installed on the emulator by the adb shell command.
If the APK is installed successfully, then the AVD is shut
down. The next step is to restart the emulator and use the

Thread Controller

AVD Controller

APK Information ——
- Extraction U Traffic generator
APK Files Traffic Files
APK Queue Critical resource lock
Exception handler
Input Pretreatment Regulation Collection Output

Fig. 2: The work flow of traffic generation & collection unit

tcpdump tool to collect traffic. We added the step of restarting
the emulator because 83.3% of malware samples are activated
by this restarting method, according to [1]. In addition, we
find that background traffic will be included in the traffic
collected by our method. Fortunately, the background traffic
is controllable. The background traffic consists of those TCP
packets that have specific source and destination IP addresses.
Thus, we can filter out this part of the background traffic
by applying a simple traffic filter. Android traffic generation
and collection algorithm described above can be illustrated in
Algorithm 1.

IV. EVALUATION

After presenting the traffic collection framework in detail,
we evaluate its efficiency. All experiments were run on col-
lection machines with an 8GB memory and Intel Core i7-
4790 3.60GHz. We evaluate the framework from collection
efficiency and traffic quality two aspects.

A. Collection Efficiency for Multithreading

As shown in Figure 3, we evaluate the time spent on
Android traffic collection for multithreading on the settled
number of apps. Given that collection machines need to per-
form some preparation work before collecting network traffic
from apps, the time difference is not notable at the beginning
of the collection process. Once the pretreatment is completed,
the advantage of multithreading starts to show. According to
Figure 3, the collection machine with three threads takes 2,087
minutes to collect the traffic of 800 apps. For the collection
machines using six threads, nine threads, and twelve threads,
the collection of traffic of 800 apps takes 1,260, 829, and 551
minutes, respectively. Clearly, using multithreading technique
can drastically improve the collection efficiency.

B. The Quality of Collected Traffic

Through this traffic collection framework, we collect 330
MB traffic data generated by 5,560 malicious apps and 808
MB traffic data generated by 6,000 benign apps. It takes us
about 140 hours (5.7 days) to complete the network traffic
collection. In [9], Chen et al. proposed a traffic collection
platform which we call Chen’s platform. Here, we compar-
atively analyze the quality of two traffic data sets collected

1755

Data: Android APK files in app storage server and APK
information in APK information queue
Result: Traffic files
while The APK information queue is not null do
Read one piece of APK information in the queue;
if The adb is in use then
Wait 5 seconds;
Continue;

else
| Create and start AVD;

end

Get the PID and the name of AVD;
Install the app;

Restart AVD;

Start Tcpdump tool;

Start the App;

if Starting the app fails then

Log the error messages;

Shut down the AVD;

else

Run AVD 300 seconds;

Filter out background traffic;
Read next piece of APK information in APK
information queue;

end

end
Algorithm 1: Android traffic generation and collection algo-
rithm

using their platform and the DroidCollector platform. The size
of traffic data generated by 5,560 malicious apps during the
first 5 minutes is 1,702 MB using Chen’s platform, whereas
the traffic data is only 330 MB with DroidCollector. The
packet number is also clearly smaller using DroidCollector.
The comparison charts of traffic size and packet number are
shown in Figure 4, respectively. Apparently, our collected
traffic is much less than Chen’s collected traffic data in terms

Number of APK

—— twelve threads
—— nine threads

200 T Hiroe reads

800 ?

700

600

500

400

300

200

100

0 500 1000 1500 2000 2500 3000 Time(min)

Fig. 3: Collection efficiency for multithreading on one machine

of data size or packet number because we have filtered out
irrelevant traffic. We also comparatively analyze the protocol
distribution of the two traffic data sets using the two methods.

1600MB 6,000,000

1200MB
4,000,000

800MB

2,000,000
400MB

ZChen's
method

Malicious

0 : .
LC"E": DroidCollector

ZChen's b i dcotector
metho

method
Malicious

ZChen's "
method DroidCollector

Benign

DroidCollector

Benign

Fig. 4: Traffic data size and packet number using two different
methods

Figure 5 shows the comparison pie charts of various proto-
cols in benign traffic data, and Figure 6 shows the proportions
of different protocols of traffic in malicious traffic data. Using
Chen’s method, the collected traffic contains mainly Windows
OS and background traffic generated by Android emulator,
whereas only a small portion of the traffic generated by the
apps installed on the emulator. On the other hand, using
DroidCollector to collect traffic, most of the traffic data is
valuable HTTP traffic. Considering the superior performance
of DroidCollector in terms of the traffic size, packet number,
and traffic protocol distribution, we can conclude that the
validity of collected traffic has been significantly improved.

Looking into details of the protocol distribution ratios of
two Android traffic datasets, we can see that HTTP protocol
packet number, DNS protocol packets number and HTTPS
protocol packets number account for 99.98% Android traffic
data collected by DroidCollector framework. Using Chen’s
method these three main protocols’ ratio is only 9.38%, while
the remaining protocol types of traffic data are LLMNR
protocols, SSDP protocols, NBNS protocols. We consider
these types(LLMNR, SSDP, NBNS) of traffic as background
traffic because these types of background traffic will interfere
with the analysis of apps’ traffic data.

In addition, to further improve the traffic quality, we start the
Android virtual machine in every collection machine 10 times

1756

continuously when no app is running. During this process, we
capture the traffic of the virtual machine within 10 minutes.
We start the collection of apps’ traffic only when there is no
traffic coming out of the virtual machine. This procedure will
ensure that all the traffic data from the Android virtual machine
are generated by the app.

0, 2.72% o
2.98% 667% 6.5‘9A1

s < 3576
22.79% 46.21% "
N

18.64% I
DroidCollector

Z. Chen's method

m DNS m HTTP m SSL/TLSv1 m SSDP m NBNS = LLMNR m DHCP

Fig. 5: Application layer protocols on benign App’s traffic
using two methods

1.44%

l 36.45%

DroidCollector

1.85%
L1 1.80%

62.11%
57.71% 24.03%
N

13.50%

Z. Chen's method

m DNS m HTTP m SSL/TLSv1 m SSDP m NBNS = LLMNR m DHCP

Fig. 6: Application layer protocols on malicious App’s traffic
using two methods

V. MALWARE BEHAVIOR DETECTION USING COLLECTED
TRAFFIC

Based on the network traffic collection framework Droid-
Collector mentioned above, we have collected a significant
amount of network traffic data including both benign traffic
generated by benign apps and malicious traffic generated by
malicious apps. We apply the machine learning algorithm:
SVM (Support Vector Machines) [10] on traffic features to
identify malicious network behaviors. The work flow is shown
in Figure 7, which contains four major steps: network traffic
collection, feature extraction, vector space embedding and
learning-based detection.

A. Network Traffic Dataset

According to [1], more than 80% of malware utilize repack-
aging technique to embed malicious codes to normal apps.
This type of malware not only performs malicious behaviors,
but also runs normal functions. Therefore, the traffic dataset
generated by malware is a mixture of benign and malicious
traffic data. To improve the accuracy of the detection mecha-
nism, we extract malicious traffic flows according to malicious
destination IPs or domain names published by Virustotal [11].

Normal Traffic HTTP Features

—>

Malicious Traffic HTTP Features

9

()

(a)Network Traffic (b) Feature Extraction

(]
QQ CB\‘en ign
®)

[

A
A

AA A

- Malicious

(c) Embedding in Vector Space (c) Learning-based Detection

Fig. 7: The work flow of malicious behavior detection

In this paper, we only focus on the HTTP packets, since it
contains lots of useful information for malware detection [12].
In Table I, we show the number of collected HTTP packets
for each family of malware.

TABLE I: HTTP packet number of each family’s malware

Id Family Number | Id Family Number
A plankton 3846 F Gappusin 247

B DroidKungFu 657 G Sendpy 85

C FakeRun 391 H ExploitLinuxLotoor 20

D Opfake 317 I Ginmaster 19

E Glodream 268 J Gamex 9

B. Network Traffic Feature Extraction

We extract traffic features from the HTTP header of benign
traffic and malicious traffic, given that HTTP is the predom-
inant protocol adopted by most mobile apps, and metadata
information in HTTP request headers always contains valuable
information [12]. These extracted features include the field of
host, request-uri field, request method field, and user-agent
field. A detailed explanation of these fields is presented in
Table II. Extracted HTTP request fields from a HTTP request
form a feature tuple which can represent this HTTP packet.
Every feature tuple has a specific categorical label which
corresponds to a benign app or malware family name.

TABLE II: Features extracted from HTTP request header
Id

Feature
Host

Description

This field specifics to the Internet host
and port number of the requested re-
source.

2 Request-Uri The URI is from the request source.

3 Request-Method The method from HTTP indicates the
action to be performed on the identified
resource.

4 User-Agent This field contains information about

the user agent originating the request.

C. Embedding in Vector Space

The most common shortcoming of machine leaning methods
is the black-box property of these methods [13]. We add this
embedding step specifically to demonstrate the process of
malware detection more clearly. We define four sets for each
feature extracted from malicious HTTP requests. S set saves
the values of all host strings appearing in malicious HTTP

1757

requests; Sy represents the keys in request-uri; the request-
method set and user-agent strings are stored in S3 and Sy,
respectively. We define a feature vector where each feature
is either 0 or 1. Every specific HTTP request feature tuple
is mapped to a feature vector. The mapping relationship is
defined as follows:

{

We give an example to clarify the calculation process. A
malware sample connects to a host which does not exist in
S1, however, the request-uri, request-method and user-agent
of this HTTP packet appear in Ss, S3, Sg,respectively. An
example of the feature vector U is shown below:

1 If the ith feature exists in .S;
0 Otherwise

U;

0 Host S

U— 1 Request — Uri So
1 Request — Method Ss

1 User — Agent Sy

D. Learning-based Detection

We use machine learning techniques to automatically learn
the separating hyperplane between benign traffic and malicious
traffic. We comparatively analyze several machine learning
algorithms, and finally, SVM classifier is selected because it
achieves the best performance. By learning the features of the
traffic data, it can divide the traffic data into two categories,
namely, the benign traffic and malicious traffic. The detection
function is given by:

F(z) =<W,U >

The training process of SVM involves the continuous adjust-
ment of the weight vector W. We arrive at a final conclusion
bas ed on the value of F(z). That is, F'(x) > ¢ (a given value)
indicates malicious activity, whereas F'(z) < t corresponds
to benign apps. The F(x) t represents the separating
hyperplane.

E. Analysis of The Detection Results

To ensure the reliability of the detection model, 66% of
feature vectors are applied to train detection model while 34%
of the feature vectors are used to test the detection model. With
the separating hyperplane, we can give an unknown HTTP
packet a benign or malicious label. The detection rates of
10 different families’ malware and benign apps are shown in
Figure 8. From the histogram, we can see that 5 malware

families, such as Opfake Family (D), and Glodream Family
(E), yield detection rates of 100%. Moreover, the False positive
rate (FPR) is very low, and the maximum false positive rate
(FPR) is only 1.15%.

I | I I - I I I
A B € D E F G H | J

Fig. 8: The TPR and FPR on malicious traffic in each family

100%
80%
W TPR

1.20% P
0.80%
0.40%

0.00%

However, we should also note an unexpected phenomenon:
the detection model cannot classify malware from FakeRun
Family (C) and Gamex Family (J) to the correct category.
To find the cause of this problem, we carefully analyze these
two families’ malware samples and their classification details.
We find that extracted features from the FakeRun Family are
similar with that of the Plankton family, the detection model
falsely regards these samples as Plankton Family. As for the
Gamex Family, the total sample number is only 9, which is
too small for SVM to train an effective detection model. On
average, we achieve about 98% confidence that these unknown
HTTP request packets are classified by the detection model
into their corresponding categories correctly.

VI. LIMITATIONS

Although this platform is able to launch automated network
traffic collection, and the traffic collected has high quality,
there are still some limitations in certain scenarios. Here,
we will discuss two major weaknesses of DroidCollector that
could be improved.

A. Incomplete Malicious Traffic Data

According to [1], BOOT COMPLETED is the most com-
monly used malware activation method. In this paper, we use
the activation method based on emulator restarting. However,
other types of activation methods such as receiving a call,
accessing a website, are not implemented. Therefore, the
collection of malicious traffic data may not be complete and
comprehensive. To ease this problem, we will add activation
methods and collect more malicious traffic in the future.

B. Advanced Malware with The Ability of Hiding Malicious
Behaviors

To evade advanced malware detection methods, advanced
malware executes malicious behaviors in subtle ways. Malware
may attempt to detect the current operating environments
before it runs its malicious code [14]. Our method can also
enable the collection of traffic data on real smartphones, which
is one of our future directions.

VII. CONCLUSION

Android malware has emerged as a new and rapidly growing
threat to the mobile ecosystem. Malware can be identified by
analyzing mobile network traffic traces. However, research ini-
tiatives have been constrained by the lack of a comprehensive

1758

mobile malware traffic dataset. To address this issue, we intro-
duce DroidCollector, which is an effective Android traffic gen-
eration and collection framework to collect traffic generated by
Android apps while removing irrelevant background traffic.
The multiple collection machines enabled by the multithread-
ing mechanism significantly improve the collection efficiency.
To stimulate research in the area of malware detection, we
publish the traffic data collected from our framework to other
researchers under http : //sec.ujn.edu.cn/DroidCollector
and we will keep updating the dataset. We also apply SVM
machine learning algorithm on the traffic features extracted
from the traffic data to identify malicious network traffic. The
final results show that we can achieve 98% confidence, which
indicates that most of malicious HTTP traffic is correctly
classified.

ACKNOWLEDGEMENT

This work was supported by the National Natural Sci-
ence Foundation of China under Grants No0.60903176
and No.61472164, the Natural Science Foundation of
Shandong Province under Grants No.ZR2014JL042 and
No.ZR2012FM010.

REFERENCES
(1

X. Jiang and Y. Zhou, “Dissecting android malware: Characterization
and evolution,” in IEEE Symposium on Security & Privacy, 2012, pp.
95-109.

B. P. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru, and I. Molloy,
“Android permissions: a perspective combining risks and benefits,” in
Proceedings of the 17th ACM symposium on Access Control Models and
Technologies. ACM, 2012, pp. 13-22.

S. Y. Yerima, S. Sezer, and G. McWilliams, “Analysis of bayesian
classification-based approaches for android malware detection,” Infor-
mation Security, IET, vol. 8, no. 1, pp. 25-36, 2014.

I. Trestian, S. Ranjan, A. Kuzmanovic, and A. Nucci, “Measuring
serendipity: connecting people, locations and interests in a mobile 3g
network,” Acm Sigcomm, pp. 267-279, 2009.

G. Maier, F. Schneider, and A. Feldmann, A First Look at Mobile Hand-
Held Device Traffic. Springer Berlin Heidelberg, 2010.

J. Cheng, S. H. Y. Wong, H. Yang, and S. Lu, “Smartsiren: virus detec-
tion and alert for smartphones.” in Proceedings of the 5th International
Conference on Mobile Systems, Applications, and Services (MobiSys
2007), San Juan, Puerto Rico, June 11-13, 2007, 2007, pp. 258-271.
Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in Security and Privacy (SP), 2012 IEEE Symposium
on. IEEE, 2012, pp. 95-109.

H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin,
“A first look at traffic on smartphones,” in Proceedings of the 10th ACM
SIGCOMM conference on Internet measurement. ACM, 2010, pp. 281—
287.

Z. Chen, H. Han, Q. Yan, B. Yang, L. Peng, L. Zhang, and J. Li,
“A first look at android malware traffic in first few minutes,” in /IEEE
Trustcom/bigdatase/ispa, 2015.

R. E. Fan, P. H. Chen, and C. J. Lin, “Working set selection using second
order information for training svm,” Journal of Machine Learning
Research, vol. 6, no. 4, pp. 1889-1918, 2005.

“virustotal.” [Online]. Available: https://www.virustotal.com/

Q. Xu, Y. Liao, S. Miskovic, Z. M. Mao, M. Baldi, A. Nucci, and
T. Andrews, “Automatic generation of mobile app signatures from traffic
observations,” in Computer Communications (INFOCOM), 2015 IEEE
Conference on. 1EEE, 2015, pp. 1481-1489.

R. Sommer and V. Paxson, “Outside the closed world: On using machine
learning for network intrusion detection,” in Security and Privacy (SP),
2010 IEEE Symposium on. 1EEE, 2010, pp. 305-316.

[2]

[3]

[4

[5]

[6]

[71

[8]

[9]

[10]

[11]
[12]

[13]

[14] “Android malware detecting emulator.” [Online]. Avail-
able: http://cOdefreak.blogspot.hk/2014/02/android-malware-detecting-
emulator.html

