
Soft Comput (2017) 21:2035–2046
DOI 10.1007/s00500-015-1902-3

METHODOLOGIES AND APPLICATION

Flexible neural trees based early stage identification for IP traffic

Zhenxiang Chen1,2 · Lizhi Peng1,2 · Chongzhi Gao3 · Bo Yang1,2 ·
Yuehui Chen1,2 · Jin Li3

Published online: 26 October 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Identifying network traffics at their early stages
accurately is very important for network management and
security. Recent years, more and more studies have devoted
to find effective machine learning models to identify traf-
fics with few packets at the early stage. In this paper, we try
to build an effective early stage traffic identification model
by applying flexible neural trees (FNT). Three network traf-
fic data sets including two open data sets are used for the
study. We first extract both packet-level features and statis-
tical features from the first six continuous packets and six
noncontinuous packets of each flow. Packet sizes are applied
as packet-level features. And for statistical features, average,
standard deviation, maximum and minimum are selected.

Communicated by V. Loia.

B Lizhi Peng
penglizhi.jn@gmail.com

Zhenxiang Chen
czx@ujn.edu.cn

Chongzhi Gao
gaochongzhi@gzhu.edu.cn

Bo Yang
yangbo@ujn.edu.cn

Yuehui Chen
yhchen@ujn.edu.cn

Jin Li
lijin@gzhu.edu.cn

1 School of Information Science Engineering, University of
Jinan, Jinan 250022, People’s Republic of China

2 Shandong Provincial Key Lab of Network based Intelligent
Computing, Jinan 250022, People’s Republic of China

3 Department of Computer Science, Guangzhou University,
Guangzhou 510006, Guangdong Province,
People’s Republic of China

Eight classical classifiers are employed as the comparing
methods in the identification experiments. Accuracy, true
positive rate (TPR) and false positive rate (FPR) are applied
to evaluate the performances of the compared methods. FNT
outperforms the other methods for most cases in the identi-
fication experiments, and it behaves very well for both TPR
and FPR. Furthermore, it can show the selected features in
the optimal tree result. Experiment result shows that FNT is
effective for early stage traffic identification.

Keywords Early stage traffic identification · Flexible neural
trees · Machine learning

1 Introduction

Accurate network traffic identification is an important way
to ensure network security and to provide good quality of
service. In general, port-based technique and deep packet
inspection are two traditional traffic identification methods.
However, such traditional methods become invalid when con-
fronting dynamic port numbers and encrypted traffic in mod-
ern Internet environment; therefore, machine-learning-based
traffic identification has attracted much researching interests
in the last decade. Most traditional machine-learning-based
traffic identification techniques extract features on a whole
traffic instance (Este et al. 2009b; Li and Moore 2007; Moore
and Zuev 2005; Dainottia et al. 2008). The most extracting
method is presented by Moore et al. in (2005). They extract
248 statistical features based on whole traffics, such as maxi-
mum, minimum and average values of packet size, RTT. And
classifiers using these statistical features can get quite high
performances in traffic identification.

However, in real circumstances, it makes no sense to
recognize Internet traffics when they have ended. In recent

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-015-1902-3&domain=pdf


2036 Z. Chen et al.

years, the early stage traffic identification has caught enough
interests at the research community. In real cases, we must
identify Internet traffics accurately in their early stage so that
we can apply subsequent management and security policies.
Therefore, some researchers have turned to find effective
models which are able to identify Internet traffics at their
early stage. And this makes the early stage identification
become a hot topic in traffic identification researches (Dain-
otti et al. 2012; Palmieri and Fiore 2009; Esposito et al. 2013;
Zhang et al. 2014). Qu et al. (2012) have studied the problem
of the accuracy of early stage traffic identification, and found
that it is possible to identify traffic accurately at its early stage.

In this paper, we set out to create an effective early stage
traffic identification model by applying flexible neural trees.
Three network traffic data sets including two open data sets
are used for the study. We first extract both packet-level fea-
tures and statistical features from the first six continuous
packets and six noncontinuous packets of each flow. Packet
sizes are applied as packet-level features. And for statistical
features, average, standard deviation, maximum and mini-
mum are selected. Eight classical classifiers are employed
as the comparing methods in the identification experiments.
FNT shows its high performances for most cases. The experi-
mental results also confirm that a continuous packet sequence
is more effective than a noncontinuous one. However, the
early noncontinuous six packets can still help to identify the
IP traffic correctly in some extent, which can greatly meet
the identification requirement in real world.

The remainder of the paper is organized as follows. In Sect.
3, some related works about the current research achievement
of the early stage traffic classification and the FNT method are
reviewed. The detailed description of the proposed approach
of the FNT-based early stage classification is presented in
Sect. 4. In Sect. 5, the experiment approach is addressed.
The experiment result and analysis are addressed in Sect. 6.
In Sect. 7, we design and build a real-world implementa-
tion early stage identification structure. We devote the final
section to some key concluding remarks and future works.

2 Related work

It is relatively hard to recognize a traffic by only using sev-
eral early stage packets. Thus, the key problem of the early
stage traffic identification is to find out effective features in
the early stage of traffics. Bernaille et al. presented a famous
early stage traffic identification technique in (2006). They
use the size of the first few data packets of each TCP flow as
the features, and by applying K-means clustering technique,
they get high identification rates for 10 types of application
traffics. Este et al. proved in (2009a) that early stage pack-
ets of an Internet flow carried enough information for traffic
classification. They analyzed round trip time (RTT), packet

size, inter-arrival time (IAT) and packet direction of the early
stage packets and found that packet size was the most effec-
tive feature for early stage classifications. Huang et al. studied
the early stage application characteristics and used them for
classification effectively in (2008). Recently, they extracted
the early stage traffic features by analyzing the negotiation
behaviors of different applications. They use packet size (PS)
and inter packet time (IPT) of the first 10 packets for some
classifiers, while for other classifiers, they use average and
standard deviation values of PS and IPT of the early pack-
ets. They applied these features for machine-learning-based
classifiers with high performances (Huang et al. 2013).

Hullár et al. proposed an automatic machine-learning-
based method consuming limited computational and memory
resources for P2P traffic identification at early stage (Hullár
et al. 2011). Dainotti et al. (2011) construct high effec-
tive hybrid classifiers and apply a hybrid feature extraction
method for early stage traffic classification. Nguyen et al. use
statistical features derived from sub-flows for timely iden-
tification of VoIP traffics (Nguyen et al. 2012), and they
extend the concept of early stage to “timely”, since a sub-
flow refers to a small number of the most recent packets
taken at any point in a flow’s lifetime. A. Rizzi et al. pro-
posed a highly efficient neuro-fuzzy system for the early
stage traffic identification (Rizzi et al. 2013). These machine-
learning-based early identification methods all behave well
for accuracy, but none of them has the ability to show and
explain the selected features result when they get the well
accuracy result. However, the features which can help to
improve the identification performance are very important
for classifier evaluation and selection. Therefore, we select
FNT as the identification method, which has great ability to
meet the requirement.

Flexible neural trees (FNT) (Chen et al. 2004, 2005,
2007a) is a special kind of artificial neural network pro-
posed in recent years. The most distinctive feature is that
FNT is designed with flexible tree structures. This gives FNT
the ability to auto-design system structures using tree struc-
ture evolving algorithms such as immune programming (IP)
(Musilek et al. 2006), probabilistic incremental program evo-
lution (PIPE) (Salustowicz and Schmidhuber 1997) and so
on. Therefore, FNT model can obtain high generalization
abilities in many actual task of classification, approxima-
tion and prediction tasks (Chen et al. 2007b; Qu et al. 2008;
Esposito et al. 2015; Zhou et al. 2007).

3 Proposed approach

3.1 Early stage classification

To achieve early stage traffic identification, we propose to
perform classification over the most recent begin packets of

123



Flexible neural trees-based early stage identification for IP traffic 2037

Fig. 1 Illustration of early stage of a flow

Fig. 2 Illustration of continuous early stage of a flow

Fig. 3 Illustration of noncontinuous early stage of a flow

a bidirectional flow. In Fig. 1, we define the early stage of
a traffic flow. We regard the 10 packets from the beginning
of a flow as the early stage traffic packets. As the proposed
research experience, the first 6 continuous packets are con-
sidered as the really early stage packets (see Fig. 2). In real
world, especially in high speed core network condition, cap-
turing continuous packets is very difficult and impractical,
so we define the noncontinuous early stage of a flow (see
Fig. 3). In this research, we will compare the machine learn-
ing identification efficiency between the continuous and the
noncontinuous early stage.

3.2 Flexible neural tree

As introduced in Sect. 2, FNT is a special kind of artificial
neural network with flexible tree structures. It is relatively
easy for FNT model to obtain the near-optimal structure
using tree structure optimization algorithms. For a FNT
model, the leaf nodes are input nodes and the non-leaf
nodes are neurons. The output of root node is the out-
put of the whole system. FNT model uses two types of
instruction sets, the function set F which is used to con-
struct non-leaf nodes, and the terminal instruction set T for
constructing nodes in tree structures. They are described

x1

xn

x2 +n

ω 1

ω n

f(a,b) yω 2

+

x1

x3x2

x1 x2 x3 x3 x2 x1 x3x2

x3x2

Output layer

Second hidden 
layer

First hidden la yer

Input layer

6

+3

+3 +2 +3

x1 +2

Fig. 4 A flexible neuron operator (left), and a typical representation of
the FNT with function instruction set F = {+2,+3,+4,+5,+6}, and
terminal instruction set T = {x1, x2, x3}(right)

as S = F
⋃

T = {+2,+3, · · · ,+N } ⋃{x1, x2, . . . , xn},
where +i (i = 2, 3, . . . , N ) denotes the non-leaf nodes’
instructions which take i arguments. x1, x2, . . . , xn are leaf
nodes’ instructions, and they take no other arguments. The
output of a non-leaf node is calculated as a flexible neuron
model (see Fig. 4). From this point of view, the instruction
+i is also called a flexible neuron operator with i inputs.

In the creation process of neural tree, if a nonterminal
instruction, i.e., +i (i = 2, 3, . . . , N ) is selected, i real val-
ues are randomly generated and used for representing the
connection strength between the node +i and its children. In
addition, two adjustable parameters ai and bi are randomly
created as flexible activation function parameters. To develop
the FNT, the following flexible activation function is used,

f (ai , bi , x) = e
−

(
x−ai
bi

)2

(1)

The total excitation function of +n is

netn =
n∑

j=1

w j · x j (2)

where x j ( j = 1, 2, . . . , n) are the inputs to node +n . The
output of the node +n is calculated by,

outn = f (ai , bi , netn) = e
−(

netn−ai
bi

)2

(3)

The overall output of flexible neural tree can be computed
from left to right by depth-first method, recursively.

3.3 FNT tree structure optimization

PIPE Salustowicz and Schmidhuber (1997) combines prob-
ability vector coding of program instructions, population-
based incremental learning (Baluja 1994), and tree-coded
programs. PIPE iteratively generates successive populations
of functional programs according to an adaptive probability
distribution, which represented as a probabilistic prototype

123



2038 Z. Chen et al.

tree (PPT), over all possible programs. Each iteration uses
the best program to refine the distribution. Thus, the struc-
tures of promising individuals are learned and encoded in the
PPT.

PPT is important for PIPE algorithm. Each program in a
population is generated according to the PPT, which means
that the PPT is a control factor in population generating
process. And the PPT is also adjusted during the iterative
process of the population. The PPT stores the knowledge
gained from experiences with programs (trees) and guides
the evolutionary search. It holds the probability distribution
over all possible programs that can be constructed from a
predefined instruction set. The PPT is generally a complete
n-ary tree with infinitely many nodes, where n is the maximal
number of function arguments.

Each node N j in PPT, with j ≥ 0, contains a variable

probability vector
−→
Pj . Each

−→
Pj has n components, where

n is the number of instructions in instruction set S. Each
component Pj (I ) of

−→
Pj denotes the probability of choosing

instruction I ∈ S at node N j . Each vector
−→
Pj is initialized

as follows:

Pj (I ) = PT
l

∀I : I ∈ T (4)

Pj (I ) = 1 − PT
k

∀I : I ∈ F (5)

where l is the number of instructions in set T , and k is the
number of instructions in set F . PT is the total probability to
select terminal instructions.

PIPE combines two forms of learning: generation-based
learning (GBL) and elitist learning (EL). GBL is a learning
strategy according to the best program of current population,
and EL is a learning strategy according to the global best
program which is also called the elitist program. GBL is
PIPE’s main learning algorithm. The purpose of EL is to use
the best program found so far as an attractor. The whole PIPE
learning frame is as follows:

1: repeat
2: with probability Pel do EL
3: otherwise do GBL
4: until termination criterion is reached

Here, Pel is a user-defined constant in [0, 1].

3.3.1 Generation-based learning

The main steps of the generation-based learning can be
described as follows:

Step 1. Creation of program population. A population of
programs P j

rog (0 < j ≤ PS; PS is population size) are
generated using the prototype tree PPT.

Step 2. Population evaluation. Each program P j
rog of the

current population is evaluated on the given task, and a fitness
value F(P j

rog) is assigned according to the fitness function.
The best program of the current population (the one with the
smallest fitness value) is denoted as Pb

rog . The best program

found so far (elitist) is preserved in Pel
rog.

Step 3. Learning from population. Prototype tree prob-
abilities are modified such that the probability P(Pb

rog) of

creating Pb
rog increases. This procedure is called adapting

PPT towards Pb
rog. This is implemented as follows. First

P(Pb
rog) is computed by looking at all PPT nodes N j used

to generate Pb
rog:

P(Pb
rog) =

∏

j :N jusedtogeneratePb
rog

Pj (I j (P
b
rog)) (6)

where I j (Pb
rog) denotes the instruction of program Pb

rog at

node position j . Then, a target probability Ptar for Pb
rog is

calculated:

Ptar = P(Pb
rog) + (1 − P(Pb

rog)) · lr · ε + F(Pel
rog)

ε + F(Pb
rog)

(7)

Here, lr is a constant learning rate, and ε is a positive user-
defined constant. Given Ptar, all single node probabilities
Pj (I j (Pb

rog)) are increased iteratively:
do

Pj (I j (P
b
rog)) = Pj (I j (P

b
rog))+c · lr · (1 − Pj (I j (P

b
rog)))

(8)

until Pj (I j (Pb
rog) ≥ Ptar

where c is a constant influencing the number of iterations.
The smaller c, the higher the approximation precision of Ptar

and the number of the required iterations. Setting c = 0.1
turns out to be a good compromise between precision and
speed. And then all adapted vectors

−→
Pj are renormalized.

Step 4.Mutation of prototype tree. All probabilities Pj (I )
stored in nodes N j that are accessed to generate program Pb

rog
are mutated with probability PMp :

Pj (I ) = Pj (I ) + mr · (1 − Pj (I )) (9)

where mr is the mutation rate, another user-defined parame-
ter. Also all mutated vectors

−→
Pj are renormalized.

Step 5. Prototype tree pruning. At the end of each gener-
ation, the prototype tree is pruned. PPT subtrees attached to
nodes that contain at least one probability vector component
above a threshold TP can be pruned.

Step 6. Termination criteria. Repeat the above procedure
until a fixed number of program evaluations is reached or a

123



Flexible neural trees-based early stage identification for IP traffic 2039

satisfactory solution is found. In our study, we use two rules to
terminate the iteration: one is the maximum iteration number,
the other is critical fitness. Either the iteration number has
reached the maximum value or the fitness of the global best
program has achieved the critical value, the iterative process
will be terminated.

3.3.2 Elitist learning

Elitist learning, whose basic flow is the same as that of GBL,
focuses search on previously discovered promising parts of
the search space. In GBL, the PPT is adapted towards the
best program of the current population. However, in EL, the
PPT is adapted towards the elitist program. So we also use
Equation (8) and (9) to adapt the PPT, but Pb

rog is replaced

with Pel
rog in these equations. EL is particularly useful with

small population sizes and works efficiently in the case of
noise-free problems. To learn the structure and parameters
of a FNT simultaneously, there is a trade-off between the
structure optimization and the parameter learning. In fact, if
the structure of the evolved model is not appropriate, it is not
useful to pay much attention to the parameter optimization.
On the contrary, if the best structure has been found, the fur-
ther structure optimization may destroy the best structure. In
this paper, a technique for balancing the structure optimiza-
tion and the parameter learning is used. If a better structure
is found, then it does local search (simulated annealing) for a
number of steps (maximum allowed steps), or it stops in case
no better parameter vector will be found for a significantly
long time (say 100 to 2000 in our experiments). The crite-
rion of the better structure is distinguished as follows: if the
fitness value of the best program is smaller than the fitness
value of the elitist program, or the fitness values of the two
programs are equal but the nodes of the former are lower than
the later, then we say that a better structure is found.

3.4 FNT parameter optimization

Probabilistic Incremental Program Evolution(PIPE) algo-
rithms and Particle swarm optimization (PSO) algorithms
are used for evolution of the tree structure and tree para-
meters. PSO (Kennedy 2010; Yoshida et al. 2000) conducts
searches using a population of particles that correspond to
individuals in an evolutionary algorithm. A population of
particles are randomly generated initially. Each particle rep-
resents a potential solution, and it has a position represented
by a position vector xi . A swarm of particles move through
the problem space, with the moving velocity of each particle
represented by a velocity vector vi . At each time step, a func-
tion fi representing a quality measure is calculated using xi
as input. Each particle keeps track of its own best position,
which is associated with the best fitness it has achieved so far

in a vector pi . Furthermore, the best position among all the
particles obtained so far in the population is kept track as pg .
The best position means the best global solution obtained so
far. In addition to this global version, another version of PSO
keeps track of the best position among all the topological
neighbors of a particle (For more information on neighbor-
hood topology, we refer to Kennedy 1999; Krink et al. 2002).

At each time step t , using the individual best position pi
and the global best position pg(t), a new velocity for particle
i is updated by

vi (t+1) = vi (t)+c1φ1(pi (t)−xi (t))+c2φ2(pg(t)−xi (t))

(10)

where c1 and c2 are positive constants and φ1 and φ2 are
uniformly distributed random numbers in [0,1]. The term vi
is limited to the range of ±vmax. If the velocity violates this
limit, it is set to its proper limit. This method of changing
velocity enables the particle i to search around its individual
best position pi , and global best position pg . Based on the
updated velocities, each particle changes its position accord-
ing to the following equation:

xi (t + 1) = xi (t) + vi (t + 1) (11)

Based on Eqs. (10) and (11), the population of particles
tend to cluster together with each particle moving in a ran-
dom direction. This may result in premature convergence
in many problems. An effective method to avoid premature
convergence is to update the velocity as the following for-
mula (Kennedy 1999):

vi (t + 1) = χ(ωvi (t) + c1φ1(pi (t) − xi (t))

+ c2φ2(pg(t) − xi (t))) (12)

where two new parameters, χ and ω, are also real numbers.
The parameter χ controls the magnitude of v, whereas the
inertia weight ω weights the magnitude of the old velocity
vi (t) in the calculation of the new velocity vi (t + 1).

4 Experiment approach

4.1 Data traces

4.1.1 Auckland II traffic traces

Auckland II is a collection of long GPS-synchronized traces
which are taken using a pair of DAG 2 cards at the Uni-
versity of Auckland which is available at (WAND 2009).
There are 85 trace files which were captured from November
1999 to July 2000. Most traces were targeted at 24 h runs,

123



2040 Z. Chen et al.

Table 1 Characteristics of Auckland II traces

Type #instances Total bytes

ftp 251 136241

ftp-data 463 5260804

http 23721 139421961

imap 193 86455

pop3 498 98699

smtp 2602 1230528

ssh 237 149502

telnet 37 21171

but hardware failures have resulted in most traces being sig-
nificantly shorter. We select two trace files captured at Feb
14 2000 (20000214-185536-0.pcap and 20000214-185536-
1.pcap) for our study. The traces include only the header
bytes, with a maximum amount of 64 bytes for each frame,
while the application payload is fully removed. And all IP
addresses are anonymised using Crypto-Pan AES encryption.
The header traces were captured with a GPS-synchronized
mechanism using a DAG3.2E card connected to a 100 Mbps
Ethernet hub interconnecting the University’s firewall to their
border router.

Since the application payloads were not recorded in Auck-
land II, DPI tools are invalid to obtain ground truths. The only
way to pick out the original application type using port num-
bers. In this study, we only accounted the TCP case since TCP
is the predominant transport layer protocol. Each flow is thus
assigned to the class identified by the server port. We select
eight main types from Auckland II traces and filtered mouse
flows with no more than six non-zero packets as illustrated
in Sect. 3. Table 1 lists all selected types and their instance
and total bytes distributions.

4.1.2 UNIBS traffic traces

UNIBS is another opening traffic traces developed by Prof. F.
Gringoli and his research team, which is available at (NTW
2009). They developed a useful system namely GT (Gringoli
et al. 2009) for the application ground truths of the captured
Internet traffics. The traces were collected on the edge router
of the campus network of the University of Brescia on three
consecutive working days (Sept 30, Oct 1 and Oct 2 2009).
They are composed of traffic generated by a set of twenty
workstations running the GT client daemon. Traffics were
collected by running Tcpdump (Jacobsen et al. 2005) on
the Faculty’s router, which is a dual Xeon Linux box that
connects the network to the Internet through a dedicated
100 Mb/s uplink. 99 % flows in UNIBS are TCP flows. There-
fore, we again use TCP flows in this data set for our study.
Using GT, UNIBS traces recorded the application informa-

Table 2 Characteristics of UNIBS traces

Type #instances Total bytes

bittorrent 3571 6393487

edonkey 379 241587

http 25729 107342346

imap 327 860226

pop3 2473 4292419

skype 801 805453

smtp 120 43566

ssh 23 39456

tion of each captured flow. We can get the application ground
truths by both TCP port numbers and GT records. We also
chose eight main types in UNIBS for our study which are
shown in Table 2. Different from Auckland II traces, there are
two popular P2P applications in this data set, bittorrent and
edonkey, which are recorded by GT. Skype is also selected
as an import Internet application. Flows with no more than
six non-zero payload packets are also filtered. The instance
and total byte distributions of each type are listed in Table 2.

4.1.3 UJN traffic traces

The third data set is collected in a laboratory network of
University of Jinan using Traffic Labeler (TL) (Peng et al.
2014b). TL system captures all user socket calls and their cor-
responding application process information in the user mode
on a Windows host, and it sends the information to an inter-
mediate NDIS driver in the kernel mode. The intermediate
driver writes application type information on the TOS field of
the IP packets which match the 5-tuple. By this mean, each
IP packet sent from the Windows host carries their appli-
cation information. Therefore, traffic samples collected on
the network have been labeled with the accurate application
information, and they can be used for training effective traf-
fic classification models. We deployed 10 TL instances on
Windows user hosts in the laboratory network of Provincial
Key Laboratory for Network Based Intelligent Computing.
A mirror port of the uplink port of the switch was set, and a
data collector was deployed at the mirror port. The deployed
TL instances ran at work hours every day. The data collect-
ing process lasted 2 days in May 2013. Again, flows with
no more than six non-zero payload packets are also filtered.
Table 3 shows the instance and the total byte distributions of
each type.

4.2 Early stage identification features

• Packet size Packet size is proved to be the most effective
original packet-level feature in the early stage of traffics

123



Flexible neural trees-based early stage identification for IP traffic 2041

Table 3 Characteristics of UJN traces

Type #samples Total bytes

Web browser 11890 58025350

Chat 11478 60212804

Cloud disk 1563 109552924

Live update 2169 28759962

Stream media 810 785556

Mail 803 2092862

P2P 326 2521089

Other 1408 3635558

(Este et al. 2009a). We use the packet sizes of the first six
packets as the original early stage traffic features in this
study, since we have proven that the first six packets are
most effective for the early stage feature extraction (Peng
et al. 2014a). And all statistical features are computed
based on the packet sizes.

• Average The average is also known as the arithmetical
mean, which is an extensively used statistical indicator.
This feature is calculated as follows:

avg =
n∑

i=1

psi (13)

• Standard deviation The standard deviation shows how
much variation or dispersion from the average exists. And
the feature is defined as:

stdev =
√
√
√
√ 1

n − 1

n∑

i=1

(psi − avg)2 (14)

where n is the number of packets, i. e. 6 in this study.
• MaximumandminimumThe maximum and the minimum

payload size are also applied in the study, and we use the
abbreviations of max and min, respectively.

4.3 Compared methods

We execute our identification experiments using six well-
known machine learning classifiers. We use Weka data
mining software (Waikato 2013) as our experiment tool.
All classifiers are run in Weka and all processed data sets are
formatted into the Weka data file with the extension name
of “arff”. The classifiers we selected fall into five categories
according to Weka:

• Bayes Bayes classifiers are based on Bayes theorem,
which is widely applied in many engineering areas. In this
study, we choose Bayesian network (BayesNet) (Fried-
man et al. 1997) as Bayes classifiers.

• Meta Strictly speaking, meta classifier is a kind of clas-
sification framework based on a specific classifier. This
technique first trains a group of “weak learn”, and then it
generates a “strong learn” based on the weak learns. We
choose Bagging (Breiman 1996) for our study.

• RuleAs the name suggests, a rule based classifier extracts
rules using a specific policy, e. g. probability and decision
trees, and it uses the rules to classify testing data. OneR
(Holte 1993) and PART (Frank and Witten 1998) are
selected for this category in this study.

• TreesThis refers to decision trees. A decision tree divides
the target feature space hierarchically. Each division
produces a node on the decision trees. A classification
procedure is a procedure that goes from the root node
to a specific leaf node on the tree. In this study, Naive
Bayesian trees (NBTree) (Kohavi 1996) and random for-
est (RandomForest) (Svetnik et al. 2003) are selected for
this category.

• Functions Weka refers all classifiers based on specific
functions to this category. We choose support vector
machine (SVM) (Vapnik and Vapnik 1998) and radial
basis function neural network (RBFNetwork) (Broom-
head and Lowe 1988) for this category.

Table 4 lists all classifiers applied in this study. We cite the
original literature of each classifier in the table. Readers can
find technical details of each classifier in its corresponding
literature.

4.4 Accuracy performance

The confusion matrix is the basis in measuring a classification
task, wherein rows denote the actual class of the instances,
and the columns denote the predicted class. Figure 5 shows a
typical confusion matrix of a binary classification. The sim-
plest method to evaluate a classifier is using the classification
accuracy (acc) which is defined as the rate between the num-
ber of samples correctly classified and the total number of
samples in testing set. But the accuracy can only express the

Table 4 Classifiers selected in the study

Classifiers Type

BayesNet (Friedman et al. 1997) Bayes

Bagging (Breiman 1996) Meta

OneR (Holte 1993) Rule

PART (Frank and Witten 1998) Rule

NBTree (Kohavi 1996) Trees

RandomForest (Svetnik et al. 2003) Trees

SVM (Vapnik and Vapnik 1998) Functions

RBFNetwork (Broomhead and Lowe 1988) Functions

123



2042 Z. Chen et al.

TP FN

TN 

Positive Negative

TP: # of positive instances correctly classified

TN: # of negative instances correctly classified

FP: # of negative instances incorrectly classified

FN: # of positive instances incorrectly classified

P
os

iti
ve

N
eg

at
iv

e
Predicted

A
ct

ua
l

FP

Fig. 5 Confusion Matrix

overall level of hitting ratio, and it does not contain particu-
lar information of incorrectly classified sample ratio of each
class. So a more sophisticated and widely used evaluating
method is applied in this research. This method uses True
Positive Rate (TPR) and False Positive Rate (FPR) to evalu-
ate the performance of a classifier. TPR and FPR are deduced
from the confusion matrix as Fig. 5 shows. For each class,
a confusion matrix can be obtained according to the classi-
fication results. And then its TPR and FPR are defined as:

TPR = TP

TP + FN
(15)

FPR = FP

TN + FP
(16)

It can be seen from these two equations that TPR is in
fact the ratio of the correctly classified positive samples and
the total positive samples, and the FPR is the ratio of the
incorrectly classified negative samples and the total negative
samples. It can be inferred easily that:

acc = TP + TN

TP + TN + FP + FN
(17)

5 Results and analysis

5.1 Results

Figure 6 shows the experimental results of the Auckland II
data set using the first 6 packets. First of all, FNT hits the
highest TRP and the lowest FPR values in all of the com-
pared methods, and it performs perfectly in this case. The
tree classifiers, including NBTree and RandomForest, show
good performances in the experiments. In fact, FNT is also a
special kind of tree classifier. Bagging and PART also behave
fairly well. SVM accidentally gets the highest FPR value, and
RBFNetwork also does not perform very well.

We select 6 noncontinuous packets from the first 10
packets of the Auckland II data set for the next group of
experiments. The selected packet numbers are 1, 4, 6, 7, 9,
10, and the noncontinuous packet numbers are also used for
the other two data sets. Figure 7 gives the experimental results

Fig. 6 Results of Auckland II data set using the first 6 packets

Fig. 7 Results of Auckland II data set using noncontinuous 6 packets

of the Auckland II data set using the noncontinuous 6 pack-
ets. FNT gets the highest TPR value again, and its FPR value
is also very low. The lowest FPR value is hit by BayesNet
this time; however, its TPR value is also the lowest one. Bag-
ging, PART, NBTree and RandomForest gain stable and high
performances again.

When comparing the two groups of results of the Auckland
II data set, the whole performances of the noncontinuous 6
packets are not as well as that of the first 6 packets. Most of the
classifiers get higher TPR and lower FPR values for the later
case. The results show that a continuous packet sequence is
more effective than a noncontinuous one for the Auckland II
data set.

The two groups of experimental results for the UNIBS data
set are shown in Figs. 8 and 9. FNT gets high performances
again for this data set: the second highest TPR and lowest
FPR values using the first 6 packets, and the highest TPR
and the second lowest FPR values using the noncontinuous 6
packets. Bagging, PART, NBTree and RandomForest again

123



Flexible neural trees-based early stage identification for IP traffic 2043

Fig. 8 Results of UNIBS data set using the first 6 packets

Fig. 9 Results of UNIBS data set using noncontinuous 6 packets

get high TPR and low FPR values from a global view. SVM
and RBFNetwork get high FPR values, which means that the
two function classifiers misclassified many traffic instances.
It can be observed from Figs. 8 and 9 that most of the selected
classifiers get higher performances using the first 6 packets
than using the noncontinuous 6 packets. This is in accordance
with that of the Auckland II data set.

Figures 10 and 11 show the experimental results of the
UJN data set. FNT outputs the highest TPR and the lowest
FPR values for both of the first 6 packets and the noncon-
tinuous 6 packets cases. The results have shown again the
effectiveness of FNT model for traffic identification. The rel-
atively high TPR and low FPR values show once again the
stable and high performances of Bagging, PART, NBTree
and RandomForest. In contrast, SVM and RBFNetwork still
do not get good performances.

The comparison between Figs. 10 and 11 can testify again
the advantages of the method using the first 6 packets: for
most classifiers, the TPR values are relatively higher and the

Fig. 10 Results of UJN data set using the first 6 packets

Fig. 11 Results of UJN data set using noncontinuous 6 packets

FPR values are relatively lower than that of the noncontinu-
ous 6 packets cases.

Then, FNT classifier trains itself by the labeled and nor-
malized early packet size data set. The selected data records
of the first 6 packets size(size0,size1,size2,size3,size4,size5), Aver-
age size(size6) of the first 6 packets, Standard deviation
size(size7) of the first 6 packets, Maximum size(size8)and Min-
imum size(size9) of the first 6 packets were used as the inputs
(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) of FNT. For identify-
ing continuous packets in UJN data set as an example, after
the optimization of the tree structure by PIPE algorithms
and optimization of tree weights by PSO algorithms, FNT
performance is illustrated in Fig. 12. As can be learnt from
the optimized FNT tree result, except the first packet size,
the second packet size and the minimum of the first 6 pack-
ets size, all other features are selected as effective features
for the early stage IP traffic identification. Actually, the first
packet and the second packet are packets generated by the
connection and verification activity. It is useless for identify-
ing different applications. Generally, the minimum packets

123



2044 Z. Chen et al.

+2

+2

+3+3

+3 +3

X2

X8

X4 X5 X2X3

X6X7 X4X3X2

Fig. 12 The optimized FNT tree result

are the end of a flow, so it is also useless for differing the
application. From the tree result and analysis of Internet and
IP traffic packet character, FNT model really has a good abil-
ity to select useful variables (features) for the classification.

5.2 Analysis and discussions

Our experiments gained many interesting things, and we will
discuss them as follows.

• First of all, FNT shows its high performances in the exper-
iments, which has proven the effectiveness of FNT for
traffic identification. We selected three traffic data sets
in the experiments, and FNT got the highest TPR values
and the lowest FPR values for most of the cases. The
results mean that FNT is able to get the highest identi-
fication rates and the lowest misclassification rates for
traffic identification problems.

• Second, the experimental results show that a continuous
packet sequence is more effective than a noncontinuous
one. Most of the selected classifiers output higher perfor-
mances when using the first 6 packet for all of the three
data sets. It is not hard to be comprehend that a continu-
ous packet sequence can contain more complete feature
information than a noncontinuous packet sequence.

• Finally, although a noncontinuous packet sequence is
less effective than a continuous packet for identification
result, it still has acceptable efficiency, which can satisfied
the identification requirement in real-world network con-
dition. Furthermore, the selected effective features can
help to optimize the training and identification result.

6 The real-world implementation structure

For IP traffic measuring, an implementable classification
system is very important. In this section, we designed an

Internet

TL client TL client

TL client

TL client

Subnet

Subnet

Nbnet

Programmable 
Gateway

ML based 
Identification server

ML Training Server

Normal subnet

TL system

Identification Result

IP Traffic

Labeled Traffic

Classifier 
Update

Fig. 13 The real-world implementation structure

implementable ML-based early stage traffic identification
structure (Fig. 13), which can be implemented to a LAN
to measure the traffic in real world. The scheme includes
four main components of TL system, Programable gate-
way, ML training server and ML-based identification server.
Experiment platform according to the designed structure was
implemented in the Network research laboratory of Univer-
sity of Jinan.

(1) TL system. We have designed a model named Traffic
Labeller (TL) system. This system captures all user socket
calls and their corresponding application process informa-
tion in the user mode on a Windows host. Once a sending
data call has been captured, its 5-tuple source IP, destination
IP, source port, destination port and transport layer proto-
col, associated with its application information, is sent to
an intermediate NDIS driver in the kernel mode. Then, the
intermediate driver writes application type information on
TOS field of the IP packets which match the 5-tuple. In this
way, each IP packet sent from the Windows host carries their
application information. Therefore, traffic samples collected
on the network have been labeled with the accurate appli-
cation information, and it can be used for training effective
traffic classification models.

(2) Programable gateway. As can be learnt from Fig. 13,
the traffic from TL system network area and normal network
area will be forwarded to the Internet through the network
gateway. We have designed an online hybrid traffic classifier
for Peer-to-Peer systems based on network processors (Chen
et al. 2009), a famous programable hardware. In this research,
we use the network processors as the hardware platform of
programable network gateway. Before forwarding the IP traf-
fic packet, it will check the TOS field of an IP packets. The

123



Flexible neural trees-based early stage identification for IP traffic 2045

packet will be mirrored to the ML training server if a appli-
cation label is found, otherwise it will be mirrored to the
ML-based identification server.

(3) ML training server. When the ML training server cap-
tures the labeled IP traffic, the early stage features will be
extracted. In our implementation, we do not learn an identi-
fication model online. Instead, we train the Machine Leaning
model such as FNT offline on the serve, and then we transfer
or update the learned model to the ML-based identification
server for identifying IP traffic as early as possible.

(4) ML-based identification server. Once the classifier has
been trained on ML training server, it can be updated to the
ML-based identification server. The traffic from the normal
network can be identified based on their early stage features.
The system manager can monitor the classifier according to
the requirements, it can add, delete or modify the classifi-
cation knowledge to ensure the classification accuracy, and
reduce the classification FPR (False Negative Rate), and then
enhance the TPR (True Positive Rate) to meet the real-world
identification requirement.

7 Conclusion and future work

In this paper, we have tried to build an effective early stage
traffic identification model using Flexible Neural Networks.
We use three traffic data sets including two opening data sets
for the experimental evaluations. And eight classical classifi-
cation algorithms are applied for experimental comparisons.
According to the experimental results, we conclude that FNT
is effective for the early stage traffic identification. As can be
seen from the experimental results that FNT outperforms the
other six classifiers for most experiment cases. Furthermore,
FNT does not only get high total identification rates, but also
shows good trade-off among different traffic types. And this
is very important for traffic identification, especially for the
cases with an imbalanced data distribution.

It is often a difficult task to select variables (features)
for the classification problem, especially when the feature
space is large. A fully connected NN classifier usually can-
not do this. In the perspective of FNT framework, the nature
of model construction procedure allows the FNT to identify
important input features in building a traffic classifier that is
computationally efficient and effective. In the future, we plan
to design a distributed hierarchical early stage classification
structure, which can make full use of the selected optimal
feature result feedback to help improve the other distributed
classifiers.

Acknowledgements This study is supported by the National Nat-
ural Science Foundation of China under Grant No. 61472164, the
Natural Science Foundation of Shandong Province under Grant Nos.
ZR2014JL042 and ZR2012FM010.

Compliance with ethical standards

Conflict of interest The authors declared that they have no conflicts
of interest to this work.

References

Baluja S (1994) Population-based incremental learning: a method for
integrating genetic search based function optimization and com-
petitive learning. Tech report, Carnegie Mellon University

Bernaille L, Teixeira R, Akodkenou I, Soule A, Salamatian K (2006)
Traffic classification on the fly. ACM SIGCOMM Comput Com-
mun Rev 36(2):23–26

Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140
Broomhead DS, Lowe D (1988) Multivariable functional interpolation

and adaptive networks. Proc Ijcai 2(3):321–355
Chen Y, Yang B, Dong J (2004) Nonlinear system modelling via optimal

design of neural trees. Int J Neural Syst 14(02):125–137
Chen Y, Yang B, Dong J, Abraham A (2005) Time-series forecasting

using flexible neural tree model. Inf Sci 174(3):219–235
Chen Y, Chen F, Yang JY (2007a) Evolving mimo flexible neural trees

for nonlinear system identification. In: IC-AI2007, CSREA Press
pp 373–377

Chen Y, Yang B, Abraham A (2007b) Flexible neural trees ensemble
for stock index modeling. Neurocomputing 70(4):697–703

Chen Z, Yang B, Chen Y, Abraham A, Grosan C, Peng L (2009) Online
hybrid traffic classifier for peer-to-peer systems based on network
processors. Appl Soft Comput 9:685–694

Dainotti A, Pescapé A, Sansone C (2011) Early classification of network
traffic through multi-classification. Springer, New York, pp 122–
135

Dainotti A, Pescape A, Claffy KC (2012) Issues and future directions
in traffic classification. Netw IEEE 26(1):35–40

Dainottia A, Pescap A, Rossib PS, Palmieric F, Ventrea G (2008) Inter-
net traffic modeling by means of hidden markov models. Comput
Netw 52:2645–2662

Esposito C, Ficco M, Palmieri F, Castiglione A (2013) Interconnecting
federated clouds by using publish-subscribe service. Clust Comput
16:887–903

Esposito C, Ficco M, Palmieri F, Castiglione A (2015) Smart cloud stor-
age service selection based on fuzzy logic, theory of evidence and
game theory. IEEE Trans Comput. doi:10.1109/TC.2015.2389952

Este A, Gringoli F, Salgarelli L (2009a) On the stability of the infor-
mation carried by traffic flow features at the packet level. ACM
SIGCOMM Comput Commun Rev 39(3):13–18

Este A, Gringoli F, Salgarelli L (2009b) Support vector machines for
tcp traffic classification. Comput Netw Int J Comput Telecommun
Netw 53(14):2476–2490

Frank E, Witten IH (1998) Generating accurate rule sets without global
optimization. In: Morgan Kaufmann (ed) Proceeding of Interna-
tional Conference on Machine Learning, pp 144–151

Friedman N, Geiger D, Goldszmidt M (1997) Bayesian network clas-
sifiers. Mach Learn 29(2–3):131–163

Gringoli F, Salgarelli L, Dusi M, Cascarano N, Risso F et al (2009)
Gt: picking up the truth from the ground for internet traffic. ACM
SIGCOMM Comput Commun Rev 39(5):12–18

Holte RC (1993) Very simple classification rules perform well on most
commonly used datasets. Mach Learning 11(1):63–90

Huang NF, Jai GY, Chao HC (2008) Early identifying application traf-
fic with application characteristics. In: Communications, ICC’08.
IEEE international conference on, IEEE, pp 5788–5792

Huang NF, Jai GY, Chao HC, Tzang YJ, Chang HY (2013) Application
traffic classification at the early stage by characterizing application
rounds. Inf Sci 232:130–142

123

http://dx.doi.org/10.1109/TC.2015.2389952


2046 Z. Chen et al.

Hullár B, Laki S, György A (2011) Early identification of peer-to-peer
traffic. In: Communications (ICC), 2011 IEEE international con-
ference on, IEEE, pp 1–6

Jacobsen V, Leres C, McCanne S (2005) Tcpdump/libpcap. http://www.
tcpdump.org

Kennedy J (1999) Small worlds and mega-minds: effects of neighbor-
hood topology on particle swarm performance. In: Evolutionary
computation, CEC 99, proceedings of the 1999 congress on, IEEE,
vol 3

Kennedy J (2010) Particle swarm optimization. Swarm Intell 1(1):33–
57

Kohavi R (1996) Scaling up the accuracy of naive-bayes classifiers: a
decision-tree hybrid. In: KDD’96, AAAI Press, pp 202–207

Krink T, VesterstrOm JS, Riget J (2002) Particle swarm optimisation
with spatial particle extension. In: CEC’02, IEEE, pp 1474–1479

Li W, Moore AW (2007) A machine learning approach for efficient
traffic classification. In: Modeling, analysis, and simulation of
computer and telecommunication systems. MASCOTS’07. 15th
international symposium on, IEEE, pp 310–317

Moore A, Zuev D, Crogan M (2005) Discriminators for use in flow-
based classification. Tech report, Queen Mary and Westfield
College

Moore AW, Zuev D (2005) Internet traffic classification using bayesian
analysis techniques. ACM SIGMETRICS Perform Eval Rev ACM
33:50–60

Musilek P, Lau A, Reformat M, Wyard-Scott L (2006) Immune pro-
gramming. Inf Sci 176(8):972–1002

Nguyen TT, Armitage G, Branch P, Zander S (2012) Timely and con-
tinuous machine-learning-based classification for interactive ip
traffic. IEEE/ACM Trans Netw (TON) 20(6):1880–1894

NTW (2009) Unibs: data sharing. http://www.ing.unibs.it/ntw/tools/
traces/

Palmieri F, Fiore U (2009) A nonlinear, recurrence-based approach to
traffic classification. Comput Netw 53:761–773

Peng L, Yang B, Chen Y, Wu T (2014a) How many packets are most
effective for early stage traffic identification: an experimental
study. Commun Chin 11(9):183–193

Peng L, Zhang H, Yang B, Chen Y, Wu T (2014b) Traffic labeller:
collecting internet traffic samples with accurate application infor-
mation. Commun Chin 11(1):69–78

Qu B, Zhang Z, Guo L, Meng D (2012) On accuracy of early traffic clas-
sification. In: Networking, architecture and storage (NAS), 2012
IEEE 7th international conference on, IEEE, pp 348–354

Qu SN, Liu Zl, Cui G, Zhang B, Wang S (2008) Modeling of
cement decomposing furnace production process based on flexible
neural tree. In: Information management, innovation management
and industrial engineering, ICIII’08. international conference on,
IEEE, vol 3, pp 128–133

Rizzi A, Colabrese S, Baiocchi A (2013) Low complexity, high
performance neuro-fuzzy system for internet traffic flows early
classification. In: Wireless Communications and Mobile Comput-
ing Conference (IWCMC), 2013 9th international, IEEE, pp 77–82

Salustowicz R, Schmidhuber J (1997) Probabilistic incremental pro-
gram evolution. Evol Comput 5(2):123–141

Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP
(2003) Random forest: a classification and regression tool for com-
pound classification and qsar modeling. J Chem Inf Comput Sci
43(6):1947–1958

Vapnik VN, Vapnik V (1998) Statistical learning theory, vol 1. Wiley,
New York

Waikato U (2013) Weka 3: data mining software in java. http://www.
cs.waikato.ac.nz/ml/weka/

WAND (2009) Wits: Waikato internet traffic storage. http://www.wand.
net.nz/wits

Yoshida H, Kawata K, Fukuyama Y, Takayama S, Nakanishi Y (2000) A
particle swarm optimization for reactive power and voltage control
considering voltage security assessment. Power Syst IEEE Trans
15(4):1232–1239

Zhang J, Chen X, Xiang Y, Wu J (2014) Robust network traffic classi-
fication. IEEE/ACM Trans Netw 24:84–88

Zhou J, Liu Y, Chen Y (2007) Ica based on kpca and hybrid flexible
neural tree to face recognition. In: Computer information systems
and industrial management applications, CISIM’07. 6th interna-
tional conference on, IEEE, pp 245–250

123

http://www.tcpdump.org
http://www.tcpdump.org
http://www.ing.unibs.it/ntw/tools/traces/
http://www.ing.unibs.it/ntw/tools/traces/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.wand.net.nz/wits
http://www.wand.net.nz/wits

	Flexible neural trees based early stage identification for IP traffic
	Abstract
	1 Introduction
	2 Related work
	3 Proposed approach
	3.1 Early stage classification
	3.2 Flexible neural tree
	3.3 FNT tree structure optimization
	3.3.1 Generation-based learning
	3.3.2 Elitist learning

	3.4 FNT parameter optimization

	4 Experiment approach
	4.1 Data traces
	4.1.1 Auckland II traffic traces
	4.1.2 UNIBS traffic traces
	4.1.3 UJN traffic traces

	4.2 Early stage identification features
	4.3 Compared methods
	4.4 Accuracy performance

	5 Results and analysis
	5.1 Results
	5.2 Analysis and discussions

	6 The real-world implementation structure
	7 Conclusion and future work
	Acknowledgements
	References




